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Abstract 

 
MEDIUM-RANGE ENSEMBLE PRECIPITATION AND STREAMFLOW FORECASTING 

FOR THE UPPER TRINITY RIVER BASIN IN TEXAS VIA THE NWS HYDROLOGIC 

ENSEMBLE FORECAST SERVICE  

HOSSEIN SADEGHI, MS  

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Dong-Jun Seo 

Compared to forecasts of short-term precipitation accumulations (daily or shorter) 

at lead times larger than a few days, those of longer-term accumulations (3-daily or 

longer) are significantly more skillful owing to the larger temporal scale of aggregation. If 

one can utilize this skill present in medium-range precipitation forecast in hydrologic 

prediction, it is very likely that the lead time of hydrologic forecasts, in particular, of 

streamflow and soil moisture may be extended. Though forecasts of longer-term 

accumulations of precipitation are more skillful than those of shorter-term accumulations, 

precipitation forecasts in general are too uncertain to be used as deterministic, or single-

valued, input.  

The main goal of this study is to increase forecast lead time of streamflow 

forecasts by using medium range ensemble precipitation forecasts. A premise for this 

study is that, in the ensemble paradigm, forecasting of precipitation and streamflow 

provides extending forecast lead time with improved forecast skill. To utilize forecast skill 

in medium range precipitation forecasts in the ensemble paradigm, this study uses 

Hydrologic Ensemble Forecast Service (HEFS). 

In the HEFS, the Meteorological Ensemble Forecast Processor (MEFP) was 

used to generate ensemble precipitation hindcasts using the Global Ensemble Forecast 
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System (GEFS) reforecast data. Raw streamflow hindcasts were generated via the 

Community Hydrologic Prediction System (CHPS) using the Sacramento Soil Moisture 

Accounting model (SAC-SMA) and unit hydrograph. To reduce biases and uncertainties 

in the hydrologic model results, raw streamflow ensembles were post-processed by the 

Ensemble Postprocessor (EnsPost). The precipitation, raw and post-processed 

streamflow ensembles were verified using the Ensemble Verification System (EVS) to 

assess the quality of hindcasts. Ensemble hindcasts of precipitation and streamflow were 

generated using the HEFS for a 26-year period between 1986 and 2011. The study area 

consisted of five headwater basins located upstream of the Dallas-Fort Worth (DFW) 

metropolitan area in the Upper Trinity River Basin in Texas.  

The main findings of this study include: (1) adjusting modulation canonical events is a 

very effective way to improve predictive skill in ensemble forecasts of precipitation, raw, 

and post-processed streamflow forecasts: (2) GEFS-forced medium-range precipitation 

hindcasts for the study area have valuable skill in 1-, 3-, 5-daily, weekly, and biweekly-

aggregated hindcasts; (3) in the ensemble paradigm, forecast skill in medium-range 

precipitation forecasts can be effectively utilized to improve the quality of streamflow 

forecasts in extended forecast lead time via HEFS.  

This study used the HEFS successfully, demonstrating the HEFS’s portability in the 

Unix/Linux environment outside of National Weather Service (NWS). This study also 

showed that the HEFS is an effective tool for generating skillful forecasts of precipitation 

and streamflow ensembles. This study would provide water resources managers with 

improved streamflow forecasts for the extended forecast lead time to effectively manage 

water resources and to mitigate water-related hazards. 
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(Brown at el., 2014b). If one can utilize this skill present in medium-range precipitation 

forecast in hydrologic prediction, it is very likely that the lead time of hydrologic forecasts, 

in particular, of streamflow and soil moisture may be extended. Though forecasts of 

longer-term accumulations of precipitation are more skillful than those of shorter-term 

accumulations, precipitation forecasts in general are too uncertain to be used as 

deterministic, or single-valued, input. If, on the other hand, precipitation forecasts are 

expressed as ensembles or in probabilistic terms, one may produce ensemble or 

probabilistic hydrologic forecasts, with which the users can make risk-based decisions 

(Demargne et al., 2014; Seo et al., 2010). 

There are many sources of uncertainty in streamflow forecasts: errors in 

meteorological input, structural errors in the hydrologic model, parametric errors in the 

hydrologic model, errors in the hydrologic model initial conditions, and human control and 

alternations of flow and the hydrologic cycle. The uncertainties arising from these sources 

of error propagate through the modeling system to degrade the quality of hydrologic 

forecasts (Brown and Heuvelink, 2005). Because such uncertainty information cannot be 

conveyed in a deterministic, or single-valued, forecast, it is necessary to use probabilistic 

forecasting methods. Toward that end, ensemble forecasting has gained great popularity 

in many disciplines because it may the only practical methodology available today that is 

general enough for operational hydrologic forecasting (Seo et al., 2006; Cloke and 

Pappenberger, 2009; Nester et al., 2012; Demargne et al., 2014). 

To operationalize ensemble hydrologic forecasting, the U.S. National Weather 

Service Office of the Hydrologic Development (NWS/OHD, now the NWS/National Water 

Center) has recently developed the Hydrologic Ensemble Forecast Service (HEFS; 

Demargne et al., 2014; Seo et al., 2010). The HEFS ensemble generation package 

includes the Meteorological Ensemble Forecast Processor (MEFP), the MEFP Parameter 
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forecasts (QPF, QTF). The HEFS also uses the ensemble post-processor, or EnsPost, to 

bias-correct and account for hydrologic uncertainty (Krzysztofowicz, 1999; Seo et al., 

2010) in the raw ensemble streamflow forecast that reflects only the input uncertainty. 

Because the quality of ensembles that the MEFP and the EnsPost produce depend 

heavily on the goodness of the MEFP and the EnsPost parameters estimated by the 

MEFPPE and the EnsPostPE, it is very important that the MEFP and the EnsPost 

parameters are estimated carefully to maximize skill in the ensemble forecasts. Yet, this 

relationship between the forecast accuracy and the parameter quality has not been fully 

investigated. 

For medium-range forecasting of precipitation and temperature, the HEFS 

currently uses the forecasts from the Global Ensemble Forecast System (GEFS; 

Demargne et al., 2014). While GEFS produces ensemble forecasts of precipitation and 

temperature along with many other variables (Hamill at el., 2013), such “raw” ensemble 

forecasts are generally biased in the mean and in higher-order moments (Wu et al., 

2011). As such, it is generally necessary to remove or reduce biases by statistical means 

once the real-time forecasts become available. Also, it is well known that the ensemble 

spread in these raw forecasts is not capable of capturing flow-dependent predictability 

(Wu et al., 2011). Also, while generally skillful in capturing central tendencies, the 

ensemble mean of raw forecast tends to be biased unconditionally and/or conditionally 

(Hamill at el., 2013). For these reasons, significant efforts have been made in recent 

years (Gneiting at el., 2007; Hamill et al., 2008; Hamill at el, 2013) to bias-correct GEFS 

ensemble mean forecasts and to model the uncertainties associated with the resulting 

single-valued forecasts statistically. For reliable statistical bias correction and uncertainty 

modeling, however, a large amount of historical forecasts and verifying observations are 

necessary. For this purpose, the GEFS reforecast dataset has been developed by 
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National Centers for Environmental Prediction (NCEP) which provides a consistent NWP 

model output with a long period of record, from which statistical relationships for bias 

correction and uncertainty modeling may be derived (Schaake et al., 2007; Wu et al., 

2010). The MEFP and the MEFPPE in the HEFS have been designed and developed 

with the above considerations in mind. 

This study assesses the value of utilizing the HEFS by assessing short-range 

ensemble forecasts generated by the HEFS MEFP using a single-valued WGRFC QPF. 

The GEFS reforecast dataset is used to assess the value of medium-range ensemble 

precipitation forecasts to ensemble streamflow forecasting, and to evaluate sensitivity of 

the MEFP and the EnsPost parameters to the quality of ensemble precipitation and 

streamflow hindcasts. 

The above objectives require careful and rigorous forecast verification. According 

to MetEd (https://www.meted.ucar.edu/), there are multiple reasons to verify forecasts:  

1) Monitor forecast quality by measuring the agreement between forecasts and verifying 

observations, 

2) Improve forecast quality by learning the forecast system, and 

3) Compare one forecast system with another. 

In this study, the Ensemble Verification System (EVS; Brown et al., 2010) developed by 

NWS/OHD is used to forecast verification. 

The main goal of this study is to increase lead time of streamflow forecasts by 

using medium range ensemble precipitation forecasts. A premise for this study is that, in 

the ensemble paradigm, forecasting of precipitation and streamflow provides extended 

forecast lead time with improved forecast skill. To utilize forecast skill in medium range 

precipitation forecasts in the ensemble paradigm, the HEFS is used in this study. 

 The specific objectives of this study are as follows:   
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1) Evaluate the value of utilizing the HEFS for generating ensemble precipitation 

forecasts by assessing the predictive skill of the WGRFC QPF-forced short-range 

ensemble precipitation forecasts generated by the MEFP, 

2) Assess the predictive skill of GEFS-forced medium-range ensemble precipitation 

forecasts generated by the MEFP, 

3) Advance understanding of the sensitivity of the MEFP and the EnsPost parameters to 

the quality of ensemble precipitation and streamflow hindcasts, 

4) Evaluate the impact, in terms of extending lead time and improving accuracy, of 

utilizing  GEFS-forced medium-range ensemble precipitation forecast in Objective 1  

on the raw ensemble streamflow forecast from HEP, and 

5) Assess the value of EnsPost in post-processing the raw streamflow ensemble forecast 

in Objective 3. 

This research makes the following new contributions: 

      1) It is the first time to utilize HEFS in CHPS outside of NWS. 

2) It is the first time to evaluate the value of utilizing the HEFS as an ensemble 

generator outside of NWS 

3) It is the first time to demonstrate possible benefits for decision makers in the water 

resource field by utilizing GEFS-forced medium-range ensemble forecasts of 

precipitation and streamflow 

The organization of this thesis is as follows. Chapter 1 describes the objectives of 

the study. Chapter 2 describes the tools used. Chapter 3 describes the study area and 

the methodology used. Chapter 4 presents the results. Chapter 5 summarizes the 

conclusions and future research recommendations. 
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to hydrologic models to generate raw streamflow ensembles. EnsPost bias-corrects the 

raw streamflow ensembles to produce post-processed streamflow ensembles. 

2.1.1 Meteorological Ensemble Forecast Processor (MEFP) 

The MEFP generates ensemble forecasts of precipitation and temperature given 

the conditioning single-valued forecasts. The MEFP can use multiple sources of forcing 

forecast over different lead times (short, medium-range and long) to produce a single 

ensemble forecast (see Table 2.1). 

Table 2.1 Forecast data used in the MEFPPE (NWS OHD, 2015b) 

Forecasting range Forecast data Generator/Developer 
agency 

Short 
range 

Up to 5 days Single-valued quantitative 
precipitation forecasts (QPF) 

NWS River Forecast 
Centers (RFC) 

Single-valued quantitative 
precipitation forecasts 

NWS Weather Prediction 
Center (WPC) 

Medium 
range 

Up to 15 days Ensemble forecasts of the 
Global Ensemble Forecast 
System (GEFS) 

National Centers for 
Environmental Prediction 
(NCEP) 

Long 
range 

Up to 9 
months 

Single-valued forecasts of 
the Climate Forecast 
System version 2 (CFSv2) 

National Centers for 
Environmental Prediction 

Up to 1 year Climatology ensembles Re-sampled by MEFP 
 

The MEFP models the bivariate distribution of the forecast and verifying 

observation. The bivariate distribution model is used to generate ensemble members 

given the single-valued forcing forecast. The final ensemble forecast is generated based 

on the above conditional simulation and Schaake shuffle (Wu et al., 2011; NWS OHD, 

2015b) which “shuffles” the ensemble members generated specifically for each time step 

into the naturally occurring patterns of temporal variability (Clark et al., 2004). Figure 

2.1shows the schematic of the MEFP methodology.  
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when the overall model comprises a sequence of 6-hour base events and 3-day 

modulation events, each 6-hour period within the forecast horizon is adjusted by the 

statistical model formulated based on samples pooled from the corresponding 6-hour 

base events. Then, the statistical model from the 3-day modulation events adjusts each 

3-day period. 

2.1.2 Ensemble Post-Processor (EnsPost) 

The EnsPost removes or reduces biases in streamflow simulated by a suite of 

hydrologic models called Hydrologic Ensemble Processor (HEP) in the HEFS and models 

hydrologic uncertainty. Figure 2.2 illustrates how the input and hydrologic uncertainties 

are numerically integrated under the assumption that each ensemble member is equally 

likely to yield an estimate of predictive uncertainty in ensemble streamflow forecast. The 

EnsPostPE estimates the EnsPost parameters. The EnsPost uses the autoregressive-1 

model with a single exogenous variable, or ARX (1, 1), in the bivariate normal space (Seo 

et al. 2006). Because streamflow is non-normal, the simulated and observed streamflow 

are normal quantile-transformed (NQT) (Bogner et al., 2012) before ARX (1, 1) modeling. 

Once ARX (1, 1) is applied, the predictand is back-transformed into the original space. 

Figure 2.3 illustrates the EnsPost methodology. For details, the reader is referred to Seo 

et al. (2006).  
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2.2 Ensemble Verification System (EVS) 

The EVS (Brown et al., 2010) is a Java-based tool for verification of forcing and 

hydrologic ensembles. The EVS includes a comprehensive set of metrics for verification 

of both single-valued and ensemble forecasts. The EVS can evaluate probabilistic 

forecast attributes such as reliability, resolution, sharpness and discrimination. In this 

study, the ensemble mean results are first verified using correlation, which measures the 

strength of linear association between the ensemble mean forecast and the verifying 

observation. To verify ensemble forecasts, this study uses box plots, Continuous Ranked 

Probability Skill Score (CRPSS) and Relative Operating Characteristic (ROC) Score to 

examine distribution of forecast errors visually, lumped errors, and discrimination, 

respectively. Below the EVS metrics used in this study are briefly described. For further 

details, the reader is referred to Brown et al. (2014a&b). 

The Continuous Ranked Probability Score (CRPS) represents the integral 

squared difference between the cumulative distribution functions (CDF) of the predicted 

variable, FY(q), and the corresponding CDF of the observed variable, FX(q), 

ܴܵܲܥ ൌ ሻݍሺܨሼሺ െ ሻሽଶݍሺܨ  (1-2)                                                                            ݕ݀

തതതതതതതܴܵܲܥ ൌ 	 ଵ

 (2-2)                                                                                                  ܴܵܲܥ∑	

where n denotes the number of pairs of forecasts and observations. The Mean CRPSS 

measures the performance of a forecast system relative to climatology. Because a 

perfect forecast has a CRPS of zero, the perfect value for CRPSS is unity: 

തതതതതതതതതܴܵܵܲܥ ൌ 	 ோௌ
തതതതതതതത.ି	ோௌതതതതതതതത

ோௌതതതതതതതത.
	                                                                                        (2-3) 

 
The ROC Score estimates the ability of a forecast system to predict that an event 

will occur (Probability of Detection or PoD) while avoiding predicting an incorrect event 
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that does not occur (False Alarm Rate or FAR). The area enclosed by the diagonal line 

and the ROC curve generated by (FAR, PoD) is known as the ROC area. The ROC 

Score is obtained by multiplying the ROC area by two. The ROC area for a perfect 

forecast system is 0.5. The ROC score of a perfect system is therefore 1. 

The box plot is a widely used tool for visual inspection of data distribution. In this 

study, the box plot is used to plot box-and-whisker at various quantiles of the forecast 

error as a function of ascending order of observed values. The plot readily shows the 

conditional bias of the ensemble mean forecasts, if any. 
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Table 3.1 Characteristics of the five headwater basins in the Upper Trinity River 

Basin (Saharia, 2013) 

Characteristics BRPT2 DCJT2 GLLT2 JAKT2 SGET2 

Latitude 33.23 33.12 33.62 33.29 33.34 

Longitude -97.69 -97.29 -97.15 -98.08 -97.18 

Area (km²) 862.47 1036.00 450.66 1769.00 764.05 

Mean Elev. (m) 229 197 227 279 193 

Action Stage (m) 3.35 2.74 6.10 5.49 7.01 

Flood Stage (m) 3.65 3.05 6.71 6.10 7.62 

Time to Peak (hours) 24 12 12 24 12 

 

3.2 Data used in this study 

Several data sets were used to generate precipitation and streamflow hindcasts 

for the five headwater basins (Table 3.2). As showed in Figure 2.1, the historical mean 

areal precipitation (MAP) time series and the GEFS reforecast dataset are used as input 

to the MEFPPE to estimate the MEFP parameters, and to generate ensemble 

precipitation forecasts from the MEFP. The observed mean daily flow (QME) and the 

simulated mean 6-hr flow (SQIN) are used for the EnsPostPE to estimate the EnsPost 

parameters (Figure 2.3).  
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 Table 3.2 Data sets used in this study 

Name Period of 
record 

Description 

Quantitative 
precipitation 
forecasts (QPF) 

Mar 2004 to 
Oct 2014 

6-hourly Single-valued forecasts 
Provided by WGRFC 

Mean Areal 
Precipitation (MAP) 

Oct1959 to 
Apr 2015 

Observed 6-hour accumulated 
Provided by WGRFC 

Mean daily 
streamflow (QME) 

Oct1959 to 
Apr 2015 

Observed mean daily produced by USGS 
Provided by WGRFC 

GEFS Jan1985 to Jul 
2012 

Mean ensemble precipitation forecasts 
Provided by NWS 

SQIN Oct1959 to 
Apr 2015 

Simulated mean 6-hour streamflow 
Provided by WGRFC 

 

The GEFS forecasts are 6-hourly precipitation amounts generated at 0Z for 

forecast horizons of 1 to 16 days (Hamill at el, 2013). Because an ensemble mean of a 

GEFS reforecast is estimated to be valid at 12Z, the GEFS precipitation reforecasts are 

available up to 15 days into the future for hindcasting experiments. 

3.3 Hindcasting experiments 

To address the research questions posed in Chapter 1, hindcasting experiments 

using the HEFS were designed and carried out (see Figure 3.2). Using ensemble mean 

of the GEFS reforecast and the verifying observed MAP, the MEFP parameters were 

estimated by the MEFPPE, which were then used to generate ensemble precipitation 

hindcasts conditional on the GEFS ensemble mean hindcast via the MEFP. Using the 

MEFP-generated precipitation ensemble forecasts, raw ensemble streamflow hindcasts 

are then generated using hydrologic models built in CHPS. 

The EnsPostPE uses simulated streamflow (SQIN) from the hydrologic models 

and the verifying observed streamflow (QME) to estimate the EnsPost parameters. The 

EnsPost is then used to produce post-processed streamflow hindcasts from the raw 

streamflow hindcasts using the parameters estimated by the EnsPostPE. The hindcasts 
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Table 3.3 Different combinations of environmental variables  

Environmental 
variable 

MEFPPE EnsPostPE 
Canonical 

events  
Sampling 

window (days) 
Sampling period (months) 

Case 1 

CE1 

61 
(Default value 
recommended 

by NWS) 

monthly 

Case 2 

semi-annual 
wet period:  Mar, Apr, May, Jun, 

Sep, and Oct 
dry period: Jan, Feb, Jul, Aug, 

Nov, and Dec 
Case 3 

911 

 
monthly Case 4 CE2 

Case 5 CE3 
Note 1: The choice of 91 days is based on the practice at the River Forecast Centers 
(RFC) when the default window does not produce large enough sample size. 
 

Four hindcasting experiments (see Table 3.5) were designed and carried out 

using the five different combinations of the MEFPPE and the EnsPostPE environmental 

variables (see Table 3.3). Depending on the combination of the environmental variables, 

the MEFPPE and the EnsPostPE generate different sets of parameters for the MEFP and 

the EnsPost for use in producing ensemble precipitation and post-processed forecasts, 

respectively. For all experiments, the study period was 26 years (1986 – 2011). The 

number of ensemble members generated was 55 corresponding to the number of 

historical years available for Shaake Shuffle. Each experiment evaluates the effect of 

different environmental variable-controlled parameters on predictive skill in ensemble 

forecasts. 

 
Table 3.4 Hindcasting experiments 

Experiment 
Comparison 

(from Table 3.3) 

Parameter 
Estimator 
in HEFS 

Assessment 

1 Case 1 vs Case 2 EnsPostPE aggregation time  
2 Case 1 vs Case 3 MEFPPE sampling windows 
3 Case 3 vs Case 5 MEFPPE canonical events (base) 
4 Case 4 vs Case 5 MEFPPE canonical events (modulation) 
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Table 3.5 Different combinations of canonical events  

lead time (hour)  
CE1 CE2 
 base base (CE3) modulation 

6 1 1 

1 

4 

7 

10 

21 

12 2 2 
18 

3 
3 

24 4 
30 

4 
5 

2 
36 6 
42 

5 
7 

48 8 
54 

6 
9 

3 60 10 
66 

7 
11 

72 12 
78 

8 
13 

5 

9 

84 14 

90 
9 

15 
96 16 
102 

10 
17 

6 
108 18 
114 

11 
19 

120 20 
126 

12 21 

8 

14 

132 
138 
144 
150 

13 22 

12 
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162 
168 
174 

14 23 

11 

20 

180 
186 
192 
198 

15 
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204 
210 
216 
222 

25 

13 

16 

228 
234 
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246 
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258 
264 
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276 
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288 
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18 
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29 
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Due to lack of forecast skill in WGRFC QPF-forced ensemble precipitation 

hindcasts after Day-3, the assessment has not been carried out further. The value of 

utilizing HEFS is obviously seen when this study presents that forecast skill in ensemble 

QPF generated using the single-valued WGRFC QPF via HEFS shows for the extended 

forecast lead time (6 hour vs Day-3). To assess ensemble precipitation and streamflow 

hindcasts, the GEFS data were used. 

 

4.2 Medium-range GEFS-forced ensemble precipitation hindcasts 

4.2.1 Sample size 

In this study, a sample refers to a pair between an ensemble mean hindcast and 

the verifying observation. Sampling uncertainty increases as the sample size decreases 

with increasing thresholds (Table 4.1). For the 97.5th and 99th percentile thresholds, the 

sample size is 238 and 95 for each basin, respectively. When the hindcasts are pooled 

over all 5 basins, the sample size increases to 1187 and 476 for the same thresholds. To 

reduce sampling uncertainty, verification was carried out by pooling hindcasts over all 5 

basins. The EVS metrics for individual basins are presented in Appendix A. 

 

Table 4.1 Sample size corresponding to various thresholds of observed precipitation at 

Day-1 

          Threshold 
Basin 

All1 0 % 75% 90% 95% 97.5% 99% 

BRPT2 9484 3013 2373 951 475 238 95 

DCJT2 9484 3230 2374 949 475 238 95 

GLLT2 9484 2600 2373 950 476 238 95 

JAKT2 9484 3014 2384 950 475 238 95 

SGET2 9484 3022 2395 950 475 238 95 

All 47420 14879 11863 4747 2376 1187 476 
     Note 1: “All” includes “no-rain” 
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4.2.2  Correlation Coefficient 

Figure 4.4 shows the correlation coefficient of ensemble mean of daily 

precipitation hindcasts and the verifying observations as a function of forecast lead time 

for different thresholds. The correlation for Day-1 is as high as 0.6 and decreases with 

increasing lead time and precipitation thresholds. Forecast skill exists for longer lead 

time, when compared to the skill in WGRFC QPF-forced ensemble precipitation 

hindcasts. Since no forecast skill shows after Day-8, the assessment throughout this 

section is up to Day-8. For high thresholds, correlations are very small to negligible, 

indicating little skill in predicting large precipitation amounts in the single-valued sense.  

Figures 4.5, 4.6, 4.7, 4.8, and 4.9 show the correlation coefficients of ensemble 

mean precipitation hindcasts and verifying observations for BRPT2, DCJT2, GLLT2, 

JAKT2, and SGET2, respectively. The correlation coefficients for the individual basins are 

similar among themselves in that the correlation for Day 1 is approximately 0.6 and 

decreases as lead time increases. Again, the correlation coefficients are very low for high 

thresholds. The consistent pattern among all basins indicates that pooling hindcasts from 

all five basins for verification is reasonable. 

Figure 4.10 shows the correlation coefficient between the mean of raw (upper 

panel) and post-processed (lower panel) streamflow ensembles forced by GEFS-based 

ensembles and the verifying observations as a function of lead time for different 

thresholds. In the upper panel, the correlation starts at approximately 0.8 and decreases 

as forecast lead time increases. The lower panel shows the same correlation pattern, 

indicating that no improvement in correlation occurs through post-processing. This is not 

surprising in that post-processing addresses biases, to which correlation is immune. 
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4.2.3 Box plot 

Boxplots of forecast errors against observed precipitations for up to Day-8 of 

forecast lead time are presented in Figure 4.11 and 4.12. GEFS-forced ensemble 

precipitation hindcasts are under-forecasting high precipitation events. Considering that 

the 99th observed precipitation threshold is less than 40 millimeters for this study area, 

GEFS-forced ensemble precipitation hindcasts has forecast skill up to Day-8. Figure 4.13  

and 4.14 show the box plots of forecast errors of raw streamflow against observed values 

up to Hour-210. Post-processed ensemble streamflow hindcasts tend to under-forecast 

high streamflow events, but forecast skill exists up to 50 cfs, 99th percentile observed 

streamflow events in the study area up to about Day-8 (Figure 4.15 and 4.16). Post-

processing raw streamflow hindcasts improves forecast skill for the entire forecast 

horizon. In general, it can be said that medium-range ensemble streamflow forecasts 

generated for the 5 headwater basins of the Upper Trinity River Basin has reasonable 

skill to predict precipitation and streamflow events up to a week. 
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4.4.2 Temporal aggregation in forecasts  

Figure 4.38 shows that correlation coefficient between precipitation hindcasts 

and observed precipitation increases as the temporal aggregation period increases up to 

14 days. They indicate that GEFS-forced medium-range precipitation forecast for the 

study area have valuable skill in 1-, 3-, 5-daily, weekly, and biweekly-aggregated 

forecasts. 

 

Figure 4.38 Correlation coefficient of precipitation hindcasts and corresponding 

observations with different temporal aggregation periods 

 
Finally, Figure 4.39 shows the correlation coefficient between post-processed 

streamflow and observed flow. Note that, with temporal aggregation, there exists very 

significant skill up to 14 days. They indicate that, with ensemble forecasting, it is possible 

to effectively utilize the skill in medium-range forecast of precipitation to improve the 

quality and to increase the lead time of streamflow forecast. 
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Figure 4.39 Correlation coefficient of post-processed streamflow hindcasts and 

corresponding observations with different temporal aggregation periods 
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Ensemble Postprocessor (EnsPost). The precipitation, raw and post-processed 

streamflow ensembles were verified using the Ensemble Verification System (EVS) to 

assess the quality of hindcasts. 

Ensemble hindcasts of precipitation and streamflow were generated using the 

HEFS for a 26-year period between 1986 and 2011. The study area consisted of five 

headwater basins located upstream of the Dallas-Fort Worth (DFW) metropolitan area in 

the Upper Trinity River Basin in Texas. These study basins offer a tough test for the 

HEFS, because precipitation is dominated by convection which has very limited 

predictability. The basins are flashy with fast-rising streamflow when they respond to 

rainfall but also with periods of no streamflow.  

The main findings of this study include:  

(1) The ensemble QPF generated from the single-valued WGRFC QPF using the 

MEFP in the HEFS has forecast skill for long forecast lead time (up to Day-3), 

when compared to the lead time provided by the single-valued WGRFC QPF 

used in current practice (6-hour in general). 

(2) Medium range GEFS-forced ensemble precipitation hindcasts generated with the 

MEFP in the HEFS has forecast skill up to more than a week, longer forecast 

lead time than that offered by the short-range ensemble QPF generated with the 

MEFP (up to Day-3).  

(3) Having monthly sampling period for estimating EnsPost parameters improves 

forecast skill in post-processed streamflow hindcasts, when compared to semi-

annual sampling period. This improvement is not surprising in that a high-

resolution in seasonality definition in dependent validation amounts to higher-

order fit. 
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(4) Controlling sampling window (61 vs 91 days) for estimating MEFP parameters 

does not affect forecast skill in GEFS-forced ensemble precipitation forecasts. 

Expanding the sampling window does not improve forecast skill because the 26-

year period of the GEFS record is long enough to meet the minimum sample size 

within the sampling window of 61 days to estimate MEFP parameters. 

(5) Aggregating 6-hour base canonical events generates more skillful daily 

precipitation hindcasts. Such a gain, however, does not improve skill in raw or 

post-processed streamflow hindcasts. The gain in precipitation hindcasts is 

probably too small to dominate hydrologic uncertainty occurred during the 

hydrologic process via hydrologic models. 

(6) Adjusting modulation canonical events is a very effective way to improve 

predictive skill in ensemble forecasts of precipitation, raw, and post-processed 

streamflow forecasts. The skill improvement in precipitation hindcasts ranges 

from 5% to 35%, holding up to Day 5. It suggests that, by adjusting modulation 

canonical events, MEFP can capture the underlying skill of GEFS for larger 

temporal aggregation period, which may be important in medium range forecasts. 

Such improvement enhances skill in both raw and post-processed streamflow 

hindcasts past Day 5, more effectively for high flow condition. This indicates that 

significant improvement in skill in precipitation forecasts occurs over larger 

amounts. The improved skill in the post-processed streamflow hindcasts came 

from the improved skill in the raw streamflow hindcasts.  

(7) Correlation coefficients between precipitation hindcasts and observed 

precipitation increase as the temporal aggregation period increases up to 14 

days. They indicate that GEFS-forced medium-range precipitation hindcasts for 
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the study area have valuable skill in 1-, 3-, 5-daily, weekly, and biweekly-

aggregated hindcasts.  

(8) With temporal aggregation, there exists very significant skill in post-processed 

streamflow up to 14 days. They suggest that, with ensemble forecasting, it is 

possible to effectively utilize the skill in medium-range forecast of precipitation to 

improve the quality and to increase the lead time of streamflow forecasts. 

This study used the HEFS successfully, demonstrating the HEFS’s portability in 

the Unix/Linux environment outside of NWS. This study also showed that the HEFS is an 

effective tool for generating skillful forecasts of precipitation and streamflow ensembles. 

In the ensemble paradigm, forecast skill in medium-range precipitation forecasts can be 

effectively utilized to improve the quality of streamflow forecasts in extended forecast 

lead time via HEFS. This study contributed to the knowledge of providing water resources 

managers with improved streamflow forecasts for the extended forecast lead time for 

effective both management of water resource and mitigation of water-related hazards. 

The main recommendations for future research are as follows: 

(1) Extend the study to a large number of basins for large-sample verification, 

especially for large events.  

(2) Develop and implement the parametric uncertainty processor and the ensemble 

data assimilator (DA). The current statistical techniques for modeling and 

reducing hydrologic uncertainty should be upgraded to take account of the 

dynamics of urbanization and possibly climate change.  
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Appendix A 

Hindcast results of individual headwater basins 
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